AI-Powered Cloud and Fog for Teleoperation of Autonomous Vehicles

Dr. Tao Zhang, IEEE Fellow

National Institute of Standards and Technology (NIST), USA

tao.zhang@nist.gov

+1 551 574 8249

January 2020

What's Happening to Autonomous Cars Now

I. Drive Themselves

- 1. Perception
- 2. Prediction
- 3. Decision Making

- Onboard Computing Platform
- 5. Testing

Fundamental Challenges Make Fully Self-Driving Cars a Distant Target

- 1. Self-driving algorithms: Handle excessively large range of driving scenarios
- 2. **Software**: Make extremely large & complex SW on every car auto-grade
- 3. Security: Meet car requirements current security paradigm not designed for
- 4. Integration with transportation system: Barely started
- 5. **Testing and validation**: An intractable mission now
- 6. Standards and regulations: Lots to catch up

- 1. High complexity and costs, low reliability and manageability of vehicles
- 2. Long wait for benefits: L5 or widely deployable L4 likely take years or decades, meanwhile human drivers must stay in cars

Cars Run on Complex Software Systems

Software Size (Million Lines of Code)

We Now Face a Steep Cliff: Is There a New Path?

The Rise of the Cloud for Automated Driving

So Far Cloud Assists and Uses Self-Driving Cars

Future Cloud will also Drive and Protect Cars

Cars drive themselves

Cars get help from Cloud to drive

Cloud Driving and Teleoperation

Going forward

we envision moving some automated driving intelligence into the cloud

- Vehicles: lower complexity, lower costs, higher reliability, and higher manageability
- 2. Benefits NOW, and along the way
- 3. A new path to to automated mobility
- 4. Necessary for self-driving cars of any automation levels

Different Forms of Cloud (Remote) Driving

- Cloud-based Driving Assistance: Cloud services to assist human teleoperators, or to augment or execute some driving tasks or parts of a driving task while the car or its human teleoperator drives the car
- Cloud-based Commanding: Cloud services issue highlevel driving commands or instructions to a car while the car executes the driving task on its own
- Cloud-based Driving: Cloud services take over control of some or all driving tasks of a vehicle

Evolution to Revolution with Value Along the Path

- L4-5 cloud driving
- · Human teleoperators for monitoring and emergency
- Low cost, high reliability, high manageability of the vehicle

Fully Automated Cloud Driving

Evolution

Bigger and Growing Cloud Driving Brain

- Reduced dependency on human teleoperators
- More driving scenarios and use cases
- 1-to-N teleoperation

Initial Phases

Human Teleoperators

- Provide necessary remote management and assistances to AVs
- Enable a new mobility paradigm: anyone can drive any car
- Use existing cars to deliver L4-5 functionalities
- Lower vehicle software complexity and costs

Entering the Era of Fog Computing

Horizontal Architecture

 Support multiple network types and industry verticals

Works <u>Over</u> and <u>Inside</u> Wired or Wireless Networks

(No need for siloed systems just for moving computing around inside each specific network such as 5G)

Cloud-to-Thing Continuum of Services

- E2E architecture to make computing possible anywhere along the continuum (Not just placing siloed servers, apps, or small clouds at the edge)
- Seamless integration with the clouds and things (Not isolated edge devices or apps)

Cloud/Fog Architecture for Teleoperation

What Happens When Network Performance Becomes Bad?

Conventional Approaches
typically build statistical models
of E2E delay and available
bandwidth to predict when
they may drop below
thresholds

- 1. Difficulty modeling precaution periods as they depend also on road conditions
- 2. Difficult to accurately predict long enough into the future

Machine Learning for Fail-Safe Teleoperation

